Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.

Identifieur interne : 002D78 ( Main/Exploration ); précédent : 002D77; suivant : 002D79

Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.

Auteurs : Lianghua Chen [République populaire de Chine] ; Ying Han ; Hao Jiang ; Helena Korpelainen ; Chunyang Li

Source :

RBID : pubmed:21778178

Descripteurs français

English descriptors

Abstract

Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the photosynthetic apparatus, visible as a decreased maximum efficiency of photosystem II (PSII; F(v)/F(m)) and effective quantum yield of PSII (Yield), depressed gas exchange capacity, and induced oxidative stress, visible as the disruption of antioxidative enzymes and accumulation of reactive oxygen species (ROS), in both sexes. On the other hand, Cd toxicity was mitigated by the recovery of gas exchange capacity, a decrease in ROS, and improvement of the redox imbalance in both sexes when N deposition was applied. However, males showed a higher gas exchange capacity, lower enzyme inhibition and ROS accumulation, stronger abilities to maintain cellular redox homeostasis, and a better maintenance of chloroplast ultrastructure than did females when exposed to Cd stress alone. Although males exhibited a higher Cd content in leaves than did females, males also accumulated higher levels of non-protein thiols (NP-SHs) and free amino acids (FAAs) for detoxification than did females. Sexual differences induced by Cd, visible, for example, in F(v)/F(m), Yield, net photosynthesis rate (A), and stomatal conductance (g(s)), decreased under N deposition, as no significant differences between the sexes existed in these parameters under the combined treatment. The results indicated that females are more sensitive to Cd stress and suffer more injuries than do males. Moreover, N deposition can mitigate Cd toxicity and decrease sexual differences in Cd sensitivity.

DOI: 10.1093/jxb/err203
PubMed: 21778178
PubMed Central: PMC3193010


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.</title>
<author>
<name sortKey="Chen, Lianghua" sort="Chen, Lianghua" uniqKey="Chen L" first="Lianghua" last="Chen">Lianghua Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Ying" sort="Han, Ying" uniqKey="Han Y" first="Ying" last="Han">Ying Han</name>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21778178</idno>
<idno type="pmid">21778178</idno>
<idno type="doi">10.1093/jxb/err203</idno>
<idno type="pmc">PMC3193010</idno>
<idno type="wicri:Area/Main/Corpus">002D33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D33</idno>
<idno type="wicri:Area/Main/Curation">002D33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D33</idno>
<idno type="wicri:Area/Main/Exploration">002D33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.</title>
<author>
<name sortKey="Chen, Lianghua" sort="Chen, Lianghua" uniqKey="Chen L" first="Lianghua" last="Chen">Lianghua Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041</wicri:regionArea>
<wicri:noRegion>Chengdu 610041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Ying" sort="Han, Ying" uniqKey="Han Y" first="Ying" last="Han">Ying Han</name>
</author>
<author>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium (metabolism)</term>
<term>Chloroplasts (metabolism)</term>
<term>Chloroplasts (ultrastructure)</term>
<term>Germ Cells, Plant (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Populus (ultrastructure)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Cadmium (métabolisme)</term>
<term>Cellules germinales de plante (métabolisme)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Chloroplastes (ultrastructure)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Populus (ultrastructure)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Germ Cells, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Cadmium</term>
<term>Cellules germinales de plante</term>
<term>Chloroplastes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Chloroplasts</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidative Stress</term>
<term>Photosynthesis</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Chloroplastes</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Spécificité d'espèce</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the photosynthetic apparatus, visible as a decreased maximum efficiency of photosystem II (PSII; F(v)/F(m)) and effective quantum yield of PSII (Yield), depressed gas exchange capacity, and induced oxidative stress, visible as the disruption of antioxidative enzymes and accumulation of reactive oxygen species (ROS), in both sexes. On the other hand, Cd toxicity was mitigated by the recovery of gas exchange capacity, a decrease in ROS, and improvement of the redox imbalance in both sexes when N deposition was applied. However, males showed a higher gas exchange capacity, lower enzyme inhibition and ROS accumulation, stronger abilities to maintain cellular redox homeostasis, and a better maintenance of chloroplast ultrastructure than did females when exposed to Cd stress alone. Although males exhibited a higher Cd content in leaves than did females, males also accumulated higher levels of non-protein thiols (NP-SHs) and free amino acids (FAAs) for detoxification than did females. Sexual differences induced by Cd, visible, for example, in F(v)/F(m), Yield, net photosynthesis rate (A), and stomatal conductance (g(s)), decreased under N deposition, as no significant differences between the sexes existed in these parameters under the combined treatment. The results indicated that females are more sensitive to Cd stress and suffer more injuries than do males. Moreover, N deposition can mitigate Cd toxicity and decrease sexual differences in Cd sensitivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21778178</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.</ArticleTitle>
<Pagination>
<MedlinePgn>5037-50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/err203</ELocationID>
<Abstract>
<AbstractText>Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the photosynthetic apparatus, visible as a decreased maximum efficiency of photosystem II (PSII; F(v)/F(m)) and effective quantum yield of PSII (Yield), depressed gas exchange capacity, and induced oxidative stress, visible as the disruption of antioxidative enzymes and accumulation of reactive oxygen species (ROS), in both sexes. On the other hand, Cd toxicity was mitigated by the recovery of gas exchange capacity, a decrease in ROS, and improvement of the redox imbalance in both sexes when N deposition was applied. However, males showed a higher gas exchange capacity, lower enzyme inhibition and ROS accumulation, stronger abilities to maintain cellular redox homeostasis, and a better maintenance of chloroplast ultrastructure than did females when exposed to Cd stress alone. Although males exhibited a higher Cd content in leaves than did females, males also accumulated higher levels of non-protein thiols (NP-SHs) and free amino acids (FAAs) for detoxification than did females. Sexual differences induced by Cd, visible, for example, in F(v)/F(m), Yield, net photosynthesis rate (A), and stomatal conductance (g(s)), decreased under N deposition, as no significant differences between the sexes existed in these parameters under the combined treatment. The results indicated that females are more sensitive to Cd stress and suffer more injuries than do males. Moreover, N deposition can mitigate Cd toxicity and decrease sexual differences in Cd sensitivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lianghua</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korpelainen</LastName>
<ForeName>Helena</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chunyang</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055993" MajorTopicYN="N">Germ Cells, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21778178</ArticleId>
<ArticleId IdType="pii">err203</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/err203</ArticleId>
<ArticleId IdType="pmc">PMC3193010</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Oct;21(16):1205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Nov;52(364):2115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2837-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(381):291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12493856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):272-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2003 Jun;26(6):821-833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):829-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 19;303(5665):1876-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Nov 4;1659(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15511524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(409):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1681-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jan;146(4):549-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(4):711-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Mar;59(3):411-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Apr;92(4):1086-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(10):2173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Oct;29(10):1956-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16930321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Oct;164(10):1346-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Mar;27(3):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):655-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2008 Jun 15;154(1-3):818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jun;31(6):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18284585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Jun;8(12):2514-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Nov;102(5):771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):43-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):229-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):379-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Oct;32(10):1401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19552665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):114-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Feb;10(3):349-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Jul;10(14):2661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20455211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(2):675-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1990 Sep;25(3):147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Jun;245(6):1067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28456836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1995 Feb 10;225(1):165-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7778771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Han, Ying" sort="Han, Ying" uniqKey="Han Y" first="Ying" last="Han">Ying Han</name>
<name sortKey="Jiang, Hao" sort="Jiang, Hao" uniqKey="Jiang H" first="Hao" last="Jiang">Hao Jiang</name>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Lianghua" sort="Chen, Lianghua" uniqKey="Chen L" first="Lianghua" last="Chen">Lianghua Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21778178
   |texte=   Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21778178" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020